Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 435
Filtrar
1.
Anal Chem ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656793

RESUMO

Immunoassays serve as powerful diagnostic tools for early disease screening, process monitoring, and precision treatment. However, the current methods are limited by high costs, prolonged processing times (>2 h), and operational complexities that hinder their widespread application in point-of-care testing. Here, we propose a novel centrifugo-pneumatic reciprocating flowing coupled with spatial confinement strategy, termed PRCM, for ultrafast multiplexed immunoassay of pathogens on a centrifugal microfluidic platform. Each chip consists of four replicated units; each unit allows simultaneous detection of three targets, thereby facilitating high-throughput parallel analysis of multiple targets. The PRCM platform enables sequential execution of critical steps such as solution mixing, reaction, and drainage by coordinating inherent parameters, including motor rotation speed, rotation direction, and acceleration/deceleration. By integrating centrifugal-mediated pneumatic reciprocating flow with spatial confinement strategies, we significantly reduce the duration of immune binding from 30 to 5 min, enabling completion of the entire testing process within 20 min. As proof of concept, we conducted a simultaneous comparative test on- and off-the-microfluidics using 12 negative and positive clinical samples. The outcomes yielded 100% accuracy in detecting the presence or absence of the SARS-CoV-2 virus, thus highlighting the potential of our PRCM system for multiplexed point-of-care immunoassays.

2.
Adv Sci (Weinh) ; : e2307819, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38569219

RESUMO

The gut-brain axis has recently emerged as a crucial link in the development and progression of Parkinson's disease (PD). Dysregulation of the gut microbiota has been implicated in the pathogenesis of this disease, sparking growing interest in the quest for non-invasive biomarkers derived from the gut for early PD diagnosis. Herein, an artificial intelligence-guided gut-microenvironment-triggered imaging sensor (Eu-MOF@Au-Aptmer) to achieve non-invasive, accurate screening for various stages of PD is presented. The sensor works by analyzing α-Syn in the gut using deep learning algorithms. By monitoring changes in α-Syn, the sensor can predict the onset of PD with high accuracy. This work has the potential to revolutionize the diagnosis and treatment of PD by allowing for early intervention and personalized treatment plans. Moreover, it exemplifies the promising prospects of integrating artificial intelligence (AI) and advanced sensors in the monitoring and prediction of a broad spectrum of diseases and health conditions.

3.
Exp Hematol Oncol ; 13(1): 39, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609997

RESUMO

Paradoxically, tumor development and progression can be inhibited and promoted by the immune system. After three stages of immune editing, namely, elimination, homeostasis and escape, tumor cells are no longer restricted by immune surveillance and thus develop into clinical tumors. The mechanisms of immune escape include abnormalities in antitumor-associated immune cells, selection for immune resistance to tumor cells, impaired transport of T cells, and the formation of an immunosuppressive tumor microenvironment. A population of distinct immature myeloid cells, myeloid-derived suppressor cells (MDSCs), mediate immune escape primarily by exerting immunosuppressive effects and participating in the constitution of an immunosuppressive microtumor environment. Clinical trials have found that the levels of MDSCs in the peripheral blood of cancer patients are strongly correlated with tumor stage, metastasis and prognosis. Moreover, animal experiments have confirmed that elimination of MDSCs inhibits tumor growth and metastasis to some extent. Therefore, MDSCs may become the target of immunotherapy for many cancers, and eliminating MDSCs can help improve the response rate to cancer treatment and patient survival. However, a clear definition of MDSCs and the specific mechanism involved in immune escape are lacking. In this paper, we review the role of the MDSCs population in tumor development and the mechanisms involved in immune escape in different tumor contexts. In addition, we discuss the use of these cells as targets for tumor immunotherapy. This review not only contributes to a systematic and comprehensive understanding of the essential role of MDSCs in immune system reactions against tumors but also provides information to guide the development of cancer therapies targeting MDSCs.

4.
Neuroimage ; 292: 120620, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38641257

RESUMO

Social pain, a multifaceted emotional response triggered by interpersonal rejection or criticism, profoundly impacts mental well-being and social interactions. While prior research has implicated the right ventrolateral prefrontal cortex (rVLPFC) in mitigating social pain, the precise neural mechanisms and downstream effects on subsequent social attitudes remain elusive. This study employed transcranial magnetic stimulation (TMS) integrated with fMRI recordings during a social pain task to elucidate these aspects. Eighty participants underwent either active TMS targeting the rVLPFC (n = 41) or control stimulation at the vertex (n = 39). Our results revealed that TMS-induced rVLPFC facilitation significantly reduced self-reported social pain, confirming the causal role of the rVLPFC in social pain relief. Functional connectivity analyses demonstrated enhanced interactions between the rVLPFC and the dorsolateral prefrontal cortex, emphasizing the collaborative engagement of prefrontal regions in emotion regulation. Significantly, we observed that negative social feedback led to negative social attitudes, whereas rVLPFC activation countered this detrimental effect, showcasing the potential of the rVLPFC as a protective buffer against adverse social interactions. Moreover, our study uncovered the impact role of the hippocampus in subsequent social attitudes, a relationship particularly pronounced during excitatory TMS over the rVLPFC. These findings offer promising avenues for improving mental health within the intricate dynamics of social interactions. By advancing our comprehension of the neural mechanisms underlying social pain relief, this research introduces novel intervention strategies for individuals grappling with social distress. Empowering individuals to modulate rVLPFC activation may facilitate reshaping social attitudes and successful reintegration into communal life.

5.
Adv Sci (Weinh) ; : e2308338, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38447188

RESUMO

Liquid-liquid phase separation (LLPS) is a ubiquitous process in which proteins, RNA, and biomolecules assemble into membrane-less compartments, playing important roles in many biological functions and diseases. The current knowledge on the biophysical and biochemical principles of LLPS is largely from in vitro studies; however, the physiological environment in living cells is complex and not at equilibrium. The characteristics of intracellular dynamics and their roles in physiological LLPS remain to be resolved. Here, by using single-particle tracking of quantum dots and dynamic monitoring of the formation of stress granules (SGs) in single cells, the spatiotemporal dynamics of intracellular transport in cells undergoing LLPS are quantified. It is shown that intracellular diffusion and active transport are both reduced. Furthermore, the formation of SG droplets contributes to increased spatial heterogeneity within the cell. More importantly, the study demonstrated that the LLPS of SGs can be regulated by intracellular dynamics in two stages: the reduced intracellular diffusion promotes SG assembly and the microtubule-associated transport facilitates SG coalescences. The work on intracellular dynamics not only improves the understanding of the mechanism of physiology phase separations occurring in nonequilibrium environments but also reveals an interplay between intracellular dynamics and LLPS.

6.
Int Immunopharmacol ; 131: 111852, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38492338

RESUMO

BACKGROUND: We recently found that butyrate could ameliorate inflammation of alcoholic liver disease (ALD) in mice. However, the exact mechanism remains incompletely comprehended. Here, we examined the role of butyrate on ALD-associated inflammation through macrophage (Mψ) regulation and polarization using in vivo and in vitro experiments. METHODS: For in vivo experiments, C57BL/6J mice were fed modified Lieber-DeCarli liquid diets supplemented with or without ethanol and sodium butyrate (NaB). After 6 weeks of treatment, mice were euthanized and associated indicators were analyzed. For in vitro experiments, lipopolysaccharide (LPS)-induced inflammatory murine RAW264.7 cells were treated with NaB or miR-155 inhibitor/mimic to verify the anti-inflammatory effect and underlying mechanism. RESULTS: The administration of NaB alleviated pathological damage and associated inflammation, including LPS, tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1ß levels in ALD mice. NaB intervention restored the imbalance of macrophage polarization by inhibiting inducible nitric oxide synthase (iNOS) and elevating arginase-1 (Arg-1). Moreover, NaB reduced histone deacetylase-1 (HDAC1), nuclear factor kappa-B (NF-κB), NOD-like receptor thermal protein domain associated protein 3 (NLRP3), and miR-155 expression in ALD mice, but also increased peroxisome proliferator-activated receptor-γ (PPAR-γ). Thus, MiR-155 was identified as a strong regulator of ALD. To further penetrate the role of miR-155, LPS-stimulated RAW264.7 cells co-cultured with NaB were treated with the specific inhibitor or mimic. Intriguingly, miR-155 was capable of negatively regulated inflammation with NaB intervention by targeting SOCS1, SHIP1, and IRAK-M genes. CONCLUSION: Butyrate suppresses the inflammation in mice with ALD by regulating macrophage polarization via the HDAC1/miR-155 axis, which may potentially contribute to the novel therapeutic treatment for the disease.


Assuntos
Hepatite Alcoólica , Hepatopatias Alcoólicas , MicroRNAs , Camundongos , Animais , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Hepatopatias Alcoólicas/patologia , Inflamação/metabolismo , Macrófagos , Ácido Butírico/farmacologia , Ácido Butírico/uso terapêutico , Ácido Butírico/metabolismo , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , MicroRNAs/metabolismo
7.
Biosens Bioelectron ; 255: 116240, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38554576

RESUMO

Public health events caused by pathogens have imposed significant economic and societal burdens. However, conventional methods still face challenges including complex operations, the need for trained operators, and sophisticated instruments. Here, we proposed a fully integrated and automated centrifugal microfluidic chip, also termed IACMC, for point-of-care multiplexed molecular diagnostics by harnessing the advantages of active and passive valves. The IACMC incorporates multiple essential components including a pneumatic balance module for sequential release of multiple reagents, a pneumatic centrifugation-assisted module for on-demand solution release, an on-chip silicon membrane module for nucleic acid extraction, a Coriolis force-mediated fluid switching module, and an amplification module. Numerical simulation and visual validation were employed to iterate and optimize the chip's structure. Upon sample loading, the chip automatically executes the entire process of bacterial sample lysis, nucleic acid capture, elution quantification, and isothermal LAMP amplification. By optimizing crucial parameters including centrifugation speed, direction of rotation, and silicone membrane thickness, the chip achieves exceptional sensitivity (twenty-five Salmonella or forty Escherichia coli) and specificity in detecting Escherichia coli and Salmonella within 40 min. The development of IACMC will drive advancements in centrifugal microfluidics for point-of-care testing and holds potential for broader applications in precision medicine including high-throughput biochemical analysis immune diagnostics, and drug susceptibility testing.


Assuntos
Técnicas Biossensoriais , Mycobacterium tuberculosis , Ácidos Nucleicos , Microfluídica , Sistemas Automatizados de Assistência Junto ao Leito , Testes de Sensibilidade Microbiana , Patologia Molecular , Técnicas de Amplificação de Ácido Nucleico/métodos , Testes Imediatos , Ácidos Nucleicos/análise , Escherichia coli , Dispositivos Lab-On-A-Chip
8.
BMC Microbiol ; 24(1): 97, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521894

RESUMO

BACKGROUND: Primary nephrotic syndrome (PNS) is a common glomerular disease in children. Clostridium butyricum (C. butyricum), a probiotic producing butyric acid, exerts effective in regulating inflammation. This study was designed to elucidate the effect of C. butyricum on PNS inflammation through the gut-kidney axis. METHOD: BALB/c mice were randomly divided into 4 groups: normal control group (CON), C. butyricum control group (CON+C. butyricum), PNS model group (PNS), and PNS with C. butyricum group (PNS+C. butyricum). The PNS model was established by a single injection of doxorubicin hydrochloride (DOX) through the tail vein. After 1 week of modeling, the mice were treated with C. butyricum for 6 weeks. At the end of the experiment, the mice were euthanized and associated indications were investigated. RESULTS: Since the successful modeling of the PNS, the 24 h urine protein, blood urea nitrogen (BUN), serum creatinine (SCr), urine urea nitrogen (UUN), urine creatinine (UCr), lipopolysaccharides (LPS), pro-inflammatory interleukin (IL)-6, IL-17A were increased, the kidney pathological damage was aggravated, while a reduction of body weights of the mice and the anti-inflammatory IL-10 significantly reduced. However, these abnormalities could be dramatically reversed by C. butyricum treatment. The crucial Th17/Tregs axis in PNS inflammation also was proved to be effectively regulated by C. butyricum treatment. This probiotic intervention notably affected the expression levels of signal transducer and activator of transcription 3 (STAT3), Heme oxygenase-1 (HO-1) protein, and retinoic acid-related orphan receptor gamma t (RORγt). 16S rRNA sequencing showed that C. butyricum could regulate the composition of the intestinal microbial community and found Proteobacteria was more abundant in urine microorganisms in mice with PNS. Short-chain fatty acids (SCFAs) were measured and showed that C. butyricum treatment increased the contents of acetic acid, propionic acid, butyric acid in feces, acetic acid, and valeric acid in urine. Correlation analysis showed that there was a closely complicated correlation among inflammatory indicators, metabolic indicators, microbiota, and associated metabolic SCFAs in the gut-kidney axis. CONCLUSION: C. butyricum regulates Th17/Tregs balance via the gut-kidney axis to suppress the immune inflammatory response in mice with PNS, which may potentially contribute to a safe and inexpensive therapeutic agent for PNS.


Assuntos
Clostridium butyricum , Síndrome Nefrótica , Humanos , Criança , Camundongos , Animais , RNA Ribossômico 16S , Inflamação , Rim , Ácidos Graxos Voláteis , Butiratos , Interleucina-6 , Acetatos
9.
Adv Sci (Weinh) ; : e2309305, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38509833

RESUMO

Spinal cord injury (SCI) has no effective treatment modalities. It faces a significant global therapeutical challenge, given its features of poor axon regeneration, progressive local inflammation, and inefficient systemic drug delivery due to the blood-spinal cord barrier (BSCB). To address these challenges, a new nano complex that achieves targeted drug delivery to the damaged spinal cord is proposed, which contains a mesoporous silica nanoparticle core loaded with microRNA and a cloaking layer of human umbilical cord mesenchymal stem cell membrane modified with rabies virus glycoprotein (RVG). The nano complex more readily crosses the damaged BSCB with its exosome-resembling properties, including appropriate size and a low-immunogenic cell membrane disguise and accumulates in the injury center because of RVG, where it releases abundant microRNAs to elicit axon sprouting and rehabilitate the inflammatory microenvironment. Culturing with nano complexes promotes axonal growth in neurons and M2 polarization in microglia. Furthermore, it showed that SCI mice treated with this nano complex by tail vein injection display significant improvement in axon regrowth, microenvironment regulation, and functional restoration. The efficacy and biocompatibility of the targeted delivery of microRNA by nano complexes demonstrate their immense potential as a noninvasive treatment for SCI.

10.
Nat Chem ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499848

RESUMO

Phase separation inside mammalian cells regulates the formation of the biomolecular condensates that are related to gene expression, signalling, development and disease. However, a large population of endogenous condensates and their candidate phase-separating proteins have yet to be discovered in a quantitative and high-throughput manner. Here we demonstrate that endogenously expressed biomolecular condensates can be identified across a cell's proteome by sorting proteins across varying oligomeric states. We employ volumetric compression to modulate the concentrations of intracellular proteins and the degree of crowdedness, which are physical regulators of cellular biomolecular condensates. The changes in degree of the partition of proteins into condensates or phase separation led to varying oligomeric states of the proteins, which can be detected by coupling density gradient ultracentrifugation and quantitative mass spectrometry. In total, we identified 1,518 endogenous condensate proteins, of which 538 have not been reported before. Furthermore, we demonstrate that our strategy can identify condensate proteins that respond to specific biological processes.

11.
Heliyon ; 10(3): e25566, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38352771

RESUMO

Background: Limited clinical prediction models exist to assess the likelihood of acute kidney injury (AKI) occurrence in ischemic stroke individuals. In this retrospective study, our aim was to construct a nomogram that utilizes commonly available clinical features to predict the occurrence of AKI during intensive care unit hospitalization among this patient population. Methods: In this study, the MIMIC-IV database was utilized to investigate potential risk factors associated with the incidence of AKI among ischemic stroke individuals. A predictive nomogram was developed based on these identified risk factors. The discriminative performance of the constructed nomogram was assessed. Calibration analysis was utilized to evaluate the calibration performance of the constructed model, assessing the agreement between predicted probabilities and actual outcomes. Furthermore, decision curve analysis (DCA) was employed to assess the clinical net benefit, taking into account the potential risks and benefits associated with different decision thresholds. Results: A total of 2089 ischemic stroke individuals were included and randomly allocated into developing (n = 1452) and verification cohorts (n = 637). Risk factors for AKI incidence in ischemic stroke individuals, determined through LASSO and logistic regression. The constructed nomogram had good performance in predicting the occurrence of AKI among ischemic stroke patients and provided significant improvement compared to existing scoring systems. DCA demonstrated satisfactory clinical net benefit of the constructed nomogram in both the validation and development cohorts. Conclusions: The developed nomogram exhibits robust predictive performance in forecasting AKI occurrence in ischemic stroke individuals.

12.
Heliyon ; 10(3): e24857, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38333875

RESUMO

At present, GPX4's role in the occurrence and development of diffuse large B lymphoma (DLBCL) is rarely reported. This study's purpose is to explore GPX4's significance in the diagnosis, treatment, and pathological mechanisms of DLBCL. The TIMER 2.0, GEPIA, and GEO databases were used to analyze GPX4's expression levels in DLBCL tissue, peripheral blood, and single cells, and evaluate its potential performance as a therapeutic and diagnostic marker. Cell experiments validate GPX4's role in DLBCL cells. And revealed the potential mechanism of GPX4's action from three aspects: immunity, pathogenic gene expression, and protein interaction. The results indicate that GPX4 can be used as a biomarker for treatment and diagnosis (FC > 1.5, P < 0.05, AUC>0.8, KM-P value < 0.05). In single cell data, GPX4 also showed high expression in immune cells. Besides, cell experiments have confirmed that GPX4's high expression can inhibit DLBCL cells' proliferation. Meanwhile, we found a negative correlation between GPX4 and the 16 core DLBCL's pathogenic genes, and a significant negative correlation with immune B cell infiltration. In summary, GPX4 can serve as a potential therapeutic and diagnostic marker for DLBCL. GPX4's high expression can lead to a good prognosis in DLBCL patients, which may be related to its inhibition of cancer cell proliferation, high expression of key pathogenic genes, and infiltration of immune B cells.

13.
Analyst ; 149(4): 1250-1261, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38225883

RESUMO

Exosomal microRNAs (miRNAs) play a pivotal role in intercellular communication, regulating gene expression in target cells, and hold significant promise as cancer biomarkers for early detection and screening. However, achieving precise and viable detection of exosomal miRNAs remains a challenge. This paper proposes an all-in-one detection strategy for breast cancer-derived exosomal miRNA-21 on a pen-based paper chip (PPC). The PPC is constructed using a modified automatic pen and lateral flow assay (LFA), which results in a cost-effective fabrication process. The user only needs to add the sample and trigger the top of the self-contained PPC after a period of time to complete the entire detection process. To enhance the sensitivity of exosomal miRNA testing, an enzyme-free catalyzed hairpin assembly (CHA) is further introduced, enabling highly sensitive detection of miRNA-21 with a limit of detection (LOD) of 25 fmol. Additionally, the detection of miRNAs in differentially-expressed cells and clinical samples has also been successfully achieved with high specificity. Overall, the proposed PPC provides an effective tool for detecting early cancer, monitoring diseases, and establishing point of care testing (POCT).


Assuntos
Técnicas Biossensoriais , Neoplasias da Mama , Exossomos , MicroRNAs , Humanos , Feminino , MicroRNAs/genética , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Técnicas Biossensoriais/métodos , Limite de Detecção , Exossomos/genética
14.
Nat Commun ; 15(1): 152, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167747

RESUMO

Pronoun usage's psychological underpinning and behavioral consequence have fascinated researchers, with much research attention paid to second-person pronouns like "you," "your," and "yours." While these pronouns' effects are understood in many contexts, their role in bilateral, dynamic conversations (especially those outside of close relationships) remains less explored. This research attempts to bridge this gap by examining 25,679 instances of peer review correspondence with Nature Communications using the difference-in-differences method. Here we show that authors addressing reviewers using second-person pronouns receive fewer questions, shorter responses, and more positive feedback. Further analyses suggest that this shift in the review process occurs because "you" (vs. non-"you") usage creates a more personal and engaging conversation. Employing the peer review process of scientific papers as a backdrop, this research reveals the behavioral and psychological effects that second-person pronouns have in interactive written communications.


Assuntos
Comunicação , Idioma , Humanos
15.
Anal Chim Acta ; 1287: 342033, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38182334

RESUMO

The abuse of antibiotics has become a global public safety issue, leading to the development of antimicrobial resistance (AMR). The development of antimicrobial susceptibility testing (AST) is crucial in reducing the growth of AMR. However, traditional AST methods are time-consuming (e.g., 24-72 h), labor-intensive, and costly. Here, we propose a controlled-diffusion centrifugal microfluidic platform (CCM) for rapid AST to obtain highly precise minimum inhibitory concentration (MIC) values. Antibiotic concentration gradients are generated by controlled moving and diffusing of antibiotic and buffer solution along the main microchannel within 3 min. The solution and bacterial suspension are then injected into the outermost reaction chamber by simple centrifugation. The CCM successfully determined the MIC for three commonly used antibiotics in clinical settings within 4-9 h. To further enhance practicality, reduce costs, and meet point-of-care testing demands, we have developed an integrated mobile detection platform for automated MIC value acquisition. The proposed CCM is a simple, low-cost, and portable method for rapid AST with broad clinical and in vitro applications.


Assuntos
Antibacterianos , Microfluídica , Antibacterianos/farmacologia , Centrifugação , Difusão , Testes de Sensibilidade Microbiana
16.
Patterns (N Y) ; 5(1): 100896, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38264721

RESUMO

The full morphology of single neurons is indispensable for understanding cell types, the basic building blocks in brains. Projecting trajectories are critical to extracting biologically relevant information from neuron morphologies, as they provide valuable information for both connectivity and cell identity. We developed an artificial intelligence method, deep sequential model (DSM), to extract concise, cell-type-defining features from projections across brain regions. DSM achieves more than 90% accuracy in classifying 12 major neuron projection types without compromising performance when spatial noise is present. Such remarkable robustness enabled us to efficiently manage and analyze several major full-morphology data sources, showcasing how characteristic long projections can define cell identities. We also succeeded in applying our model to both discovering previously unknown neuron subtypes and analyzing exceptional co-expressed genes involved in neuron projection circuits.

17.
Proc Natl Acad Sci U S A ; 121(4): e2315401121, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38232280

RESUMO

Biomacromolecular folding kinetics involves fast folding events and broad timescales. Current techniques face limitations in either the required time resolution or the observation window. In this study, we developed the TeZla micromixer, integrating Tesla and Zigzag microstructures with a multistage velocity descending strategy. TeZla achieves a significant short mixing dead time (40 µs) and a wide time window covering four orders of magnitude (up to 300 ms). Using this unique micromixer, we explored the folding landscape of c-Myc G4 and its noncanonical-G4 derivatives with different loop lengths or G-vacancy sites. Our findings revealed that c-Myc can bypass folding intermediates and directly adopt a G4 structure in the cation-deficient buffer. Moreover, we found that the loop length and specific G-vacancy site could affect the folding pathway and significantly slow down the folding rates. These results were also cross-validated with real-time NMR and circular dichroism. In conclusion, TeZla represents a versatile tool for studying biomolecular folding kinetics, and our findings may ultimately contribute to the design of drugs targeting G4 structures.


Assuntos
Quadruplex G , Cinética , Física
18.
Talanta ; 269: 125398, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37979508

RESUMO

Due to the ever-increasing challenge of emerging and reemerging infections on global health, the development of POCT tools has been propelled. However, conventional point-of-care testing methods suffer from several limitations, including cumbersome operation, long detection times, and low accuracy, which hamper their widespread application. Compared to traditional disease diagnostic equipment, mobile health platforms offer several advantages, including portability, ease of operation, and automated analysis of detection results through recognition algorithms. Consequently, they hold great promise for the future. Here, we developed a smartphone-based centrifugal mHealth platform implementing daisy-shaped quick response chip for hematocrit measurement. The centrifugal microfluidic chip is combined with a smartphone through a back-clip-on mobile phone adapter whose control circuit is designed with low power consumption to enable the platform to operate without requiring a high-power source that is inconvenient to carry, thereby achieving the goal of portability. Concurrently, we designed a quick response chip featuring a unique hollow daisy structure that is in line with the properties of hematocrit detection. The distinctive configuration of the chip enables adequate centrifugal force to be supplied for hematocrit detection. Additionally, our customized quick response code recognition algorithm is able to recognize this chip, facilitating non-experts in performing hematocrit intelligent recognition with their smartphones.


Assuntos
Smartphone , Telemedicina , Hematócrito , Desenho de Equipamento , Microfluídica
19.
Int Immunopharmacol ; 127: 111376, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38113691

RESUMO

BACKGROUND AND AIMS: RNA splicing is an essential step in regulating the gene posttranscriptional expression. Serine/arginine-rich splicing factors (SRSFs) are splicing regulators with vital roles in various tumors. Nevertheless, the expression patterns and functions of SRSFs in hepatocellular carcinoma (HCC) are not fully understood. METHODS: Flow cytometry and immunofluorescent staining were used to determine the CD8+T cell infiltration. Orthotopic HCC model, lung metastasis model, DEN/CCl4 model, Srsf10△hep model, and Srsf10HepOE model were established to evaluate the role of SRSF10 in HCC and the efficacy of combination treatment. RESULTS: SRSF10 was one of the most survival-relevant genes among SRSF members and was an independent prognostic factor for HCC. SRSF10 facilitated HCC growth and metastasis by suppressing CD8+T cell infiltration. Mechanistically, SRSF10 down-regulated the p53 protein by preventing the exon 6 skipping (exon 7 in mouse) mediated degradation of MDM4 transcript, thus inhibiting CD8+T cell infiltration. Elimination of CD8+T cells or overexpression of MDM4 removed the inhibitory role of SRSF10 knockdown in HCC growth and metastasis. SRSF10 also inhibited the IFNα/γ signaling pathway and promoted the HIF1α-mediated up-regulation of PD-L1 in HCC. Hepatocyte-specific SRSF10 deficiency alleviated the DEN/CCl4-induced HCC progression and metastasis, whereas hepatocyte-specific SRSF10 overexpression deteriorated these effects. Finally, SRSF10 knockdown enhanced the anti-PD-L1-mediated anti-tumor activity. CONCLUSIONS: SRSF10 promoted HCC growth and metastasis by repressing CD8+T cell infiltration mediated by the MDM4-p53 axis. Furthermore, SRSF10 suppressed the IFNα/γ signaling pathway and induced the HIF1α signal mediated PD-L1 up-regulation. Targeting SRSF10 combined with anti-PD-L1 therapy showed promising efficacy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Ciclo Celular/metabolismo
20.
Nat Commun ; 14(1): 8089, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062024

RESUMO

The notion of topological insulators (TIs), characterized by an insulating bulk and conducting topological surface states, can be extended to higher-order topological insulators (HOTIs) hosting gapless modes localized at the boundaries of two or more dimensions lower than the insulating bulk. In this work, by performing high-resolution angle-resolved photoemission spectroscopy (ARPES) measurements with submicron spatial and spin resolution, we systematically investigate the electronic structure and spin texture of quasi-one-dimensional (1D) HOTI candidate Bi4Br4. In contrast to the bulk-state-dominant spectra on the (001) surface, we observe gapped surface states on the (100) surface, whose dispersion and spin-polarization agree well with our ab-initio calculations. Moreover, we reveal in-gap states connecting the surface valence and conduction bands, which is a signature of the hinge states inside the (100) surface gap. Our findings provide compelling evidence for the HOTI phase of Bi4Br4. The identification of the higher-order topological phase promises applications based on 1D spin-momentum locked current in electronic and spintronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...